Viscosity of Associated Liquids. 2. Methylamine

Robert A. Stairs
Department of Chemistry, Trent University, Peterborough, Ontario, Canada K9J 7B8

The viscosity of methylamine is represented by the expression $\log \eta=1.635+203.2(T-69.87)$ In $\mathbf{c P}$, with a relative uncertainty of 0.18% from -70 to $30{ }^{\circ} \mathrm{C}$. (T is the temperature in K.)

In a previous paper (1) we reported an apparent inconsistency between the data for the viscosity of methylamine and that of certain other hydrogen-bonded liquids; specifically, we noted that when out data were fitted by the Fulcher equation (2)

$$
\log \eta=A+B /\left(T-T_{0}\right)
$$

(where A, B, and T_{0} are empirical constants, T_{0} being related to the glass transition temperation) the value of T_{0} obtained for methylamine, 102.0 K , seemed too large when compared to those obtained for the related liquids ammonia (50.7 K) and methanol (48.6 K).

We have now carried out further measurements of the viscosity of methylamine over a wider temperature range, -70 to $+30^{\circ} \mathrm{C}$. The original range was -70 to $-10^{\circ} \mathrm{C}$ only. The new measurements were done in part with the same and other similar viscometer, and in part with sealed Ostwald viscometers. The experimental details are as described (1).

The results are listed in Table I. The new set of constants to fit the Fulcher equation to all our data are $A=1.635, B=$ 203.2, and $T_{0}=69.87 \mathrm{~K}$ and the relative standard error of

Table I. Viscosity of Methylamine at Various Temperatures ${ }^{a}$

$t,{ }^{\circ} \mathrm{C}$	η, cP	$t,{ }^{\circ} \mathrm{C}$	η, cP	$t,{ }^{\circ} \mathrm{C}$	η, cP
29.3	0.173	-14.8	0.283	-45.2	0.445
27.2	0.176	-15.2	0.281	-50.1	0.486
24.8	0.179	-18.1	0.295	-50.6	0.495
22.1	0.184	-20.1	0.301	-50.7	0.494
18.5	0.190	-24.6	0.381	-55.3	0.541
15.5	0.196	-25.2	0.319	-58.4	0.582
12.5	0.202	-27.4	0.337	-60.2	0.605
10.1	0.206	-30.2	0.350	-60.7	0.614
9.9	0.206	-32.0	0.358	-65.2	0.681
7.7	0.212	-35.2	0.375	-66.8	0.713
5.4	0.217	-37.4	0.385	-68.0	0.740
0.1	0.231	-40.1	0.405	-68.8	0.755
-9.6	0.256	-42.7	0.425	-70.7	0.805
-10.1	0.266	-44.1	0.437		

${ }^{\text {a }}$ Pressure is 1 atm in hydrogen for all the data at temperatures below $-15^{\circ} \mathrm{C}$, and the vapor pressure of methylamine at the higher temperatures.
estimate for viscosity over the range -70 to $+30^{\circ} \mathrm{C}$ is 0.18%.

Literature Cited

(1) R. C. Makhija and R. A. Stairs, Can. J. Chem., 48, 1214 (1970). (N.B.: p 1217, column 2, line 7; the two negative signs should be deleted.)
(2) G. S. Fulcher, J. Am. Ceram. Soc., 8, 339 (1925).

Received for review April 22, 1980. Accepted May 5, 1980.

Gas-Liquid Equilibrium in Mixtures of Methane plus 9,10-Dihydrophenanthrene at Elevated Temperatures and Pressures

Herbert M. Sebastian, Ho-Mu Lin, and Kwang-Chu Chao*
School of Chemical Engineering, Purdue University, Lafayette, Indiana 47907

Gas-llquid equilibriurn in mixtures of methane and 9,10-dihydrophenanthrene was studled at four temperatures from 190 to $430^{\circ} \mathrm{C}$ in a flow apparatus. The pressures of the measurements were from 20 to 250 atm at each of the three lower temperatures and to 150 atm at the highest temperature.

Introduction

Gas-liquid equilibrium data on mixtures of light gases and heavy hydrocarbon solvents are of industrial and technological interest. Information on the solubility of the gases in the saturated liquid and the concentration of oil vapor in the saturated gas is needed for process design and analysis. The needed information in some form of correlation must be developed from experimental data.

Experimental information is extremely scarce on mixtures of heavy aromatic hydrocarbons containing more than two rings.

Sebastian et al. (1) reported gas-liquid equilibrium data on hydrogen plus 9,10 -dihydrophenanthrene. Lee-Bechtoid et al. (2) studied thermodynamic properties of 9,10-dihydrophenanthrene (abbreviated as NTDP from here on) at temperatures up to $145^{\circ} \mathrm{C}$. No previous study for the present mixture system has been reported in the literature.

Experimental Section

The experimental apparatus and procedure of this study were described by Simnick and co-workers (3). A minor change has been made in the apparatus with the addition of a Heise gauge (Model CMM) which reads pressures below 34 atm to an increased accuracy of $\pm 0.03 \mathrm{~atm}$.
Methane gas was supplied by Matheson with a minimum purity of 99%. NTDP was purchased from Aldrich Chemical Co. and from Columbia C. with a reported purity of 97%. It was further purified before use by zone refining to a purity of $99+\%$ as determined from gas-chromatographic analysis.

Figure 1. Mole fraction of methane in the saturated vapor of methane plus 9,10 -dihydrophenanthrene mixtures.

Figure 2. Solubility of methane in 9,10-dihydrophenanthrene liquid.
Condensates of cell effluents were collected from all experiments and analyzed by gas chromatography with a flame ionization detector. No significant products from chemical reactions were detected at the three lower temperatures studied. However, at the highest temperature, phenanthrene was found in the samples to the extent of $1 \sim 3 \%$ at the lower pressures and up to $\sim 5 \%$ at 150 atm . The experiment was thus discontinued at this pressure. We report the data at $430^{\circ} \mathrm{C}$ in spite of the known chemical changes in the belief that equilibrium conditions are not substantially altered in view of the closely similar properties of NTDP and phenanthrene. It is nevertheless clear that the data at $430^{\circ} \mathrm{C}$ are less accurate.

Figure 3. K values of methane.

Table I. Methane plus 9,10-Dihydrophenanthrene Vapor-Liquid Equilibrium Data

p, atm	x_{M}	y_{M}	K_{M}	K_{D}
		$190.0^{\circ} \mathrm{C}$		
20.09	0.0255	0.99760	39.12	0.00246
30.22	0.0371	0.99834	26.91	0.00172
50.5	0.0600	0.99884	16.65	0.00123
99.6	0.1132	0.99871	8.82	0.00145
150.3	0.1628	0.99849	6.13	0.00180
200.3	0.2058	0.99806	4.85	0.00244
250.0	0.2445	0.99757	4.08	0.00322
		$269.7{ }^{\circ} \mathrm{C}$		
20.04	0.0268	0.9781	36.50	0.02250
30.18	0.0396	0.9841	24.85	0.01656
50.2	0.0642	0.9886	15.40	0.01218
99.8	0.1227	0.9912	8.08	0.01003
150.1	0.1768	0.9914	5.61	0.01045
199.9	0.2278	0.9908	4.35	0.01191
249.7	0.2744	0.9893	3.61	0.01475
		$349.5{ }^{\circ} \mathrm{C}$		
20.45	0.0284	0.8925	31.43	0.1106
30.19	0.0421	0.9224	21.91	0.0810
49.9	0.0693	0.9461	13.65	0.0579
100.0	0.1353	0.9629	7.12	0.0429
150.7	0.1972	0.9665	4.90	0.0417
200.1	0.2576	0.9666	3.75	0.0450
249.2	0.3115	0.9643	3.10	0.0519
		$430.0^{\circ} \mathrm{C}$		
20.04	0.0252	0.6623	26.28	0.3464
30.01	0.0429	0.7477	17.43	0.2636
50.5	0.0763	0.8301	10.88	0.1839
99.7	0.1537	0.8889	5.78	0.1313
150.7	0.2246	0.9105	4.05	0.1154

Results

Figures 1 and 2 show the compositions of the saturated vapor and liquid phases, respectively, at four temperatures from 190 to $430^{\circ} \mathrm{C}$ as a function of pressure. The measurements were made at seven pressures from 20 to 250 atm at each temperature except the highest where the pressures were measured up to 150 atm .
At least two samples were taken at a fixed condition of temperature and pressure for both x and y. The duplicate points plotted in the figures represent the individual samples when they can be distinguished. The reproducibility of the multiple samples is within 1% in mole fraction of methane. The average values

